Millimeter-wave imaging of magnetic fusion plasmas: technology innovations advancing physics understanding
作者: Y. WangB. TobiasY.-T. ChangJ.-H. YuM. LiF. HuM. ChenM. MamidannaT. PhanA.-V. PhamJ. GuX. LiuY. ZhuC.W. DomierL. ShiE. ValeoG.J. KramerD. KuwaharaY. NagayamaA. MaseN.C. Luhmann Jr
作者单位: 1University of California at Davis, Davis, CA 95616, United States of America
2Princeton Plasma Physics Laboratory, Princeton University, Princeton, NJ 08543, United States of America
3Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
4National Institute for Fusion Science, Toki 509-5292, Japan
5Kyushu University, Kasuga, Fukuoka 816-8580, Japan
6Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
刊名: Nuclear Fusion, 2017, Vol.57 (7)
来源数据库: Institute of Physics Journal
DOI: 10.1088/1741-4326/aa5e30
原始语种摘要: Electron cyclotron emission (ECE) imaging is a passive radiometric technique that measures electron temperature fluctuations; and microwave imaging reflectometry (MIR) is an active radar imaging technique that measures electron density fluctuations. Microwave imaging diagnostic instruments employing these techniques have made important contributions to fusion science and have been adopted at major fusion facilities worldwide including DIII-D, EAST, ASDEX Upgrade, HL-2A, KSTAR, LHD, and J-TEXT. In this paper, we describe the development status of three major technological advancements: custom mm-wave integrated circuits (ICs), digital beamforming (DBF), and synthetic diagnostic modeling (SDM). These have the potential to greatly advance microwave fusion plasma imaging, enabling compact and...
全文获取路径: IOP  (合作)

  • fusion 融解
  • imaging 图像形成
  • advancing 掘进
  • physics 物理学
  • advanced 先进的
  • technique 技术
  • tokamak 托卡马克
  • scenario 剧情
  • enabling 启动
  • inductive 电感的