The Space Complexity Analysis in the General Number Field Sieve Integer Factorization
作者: Qi WangXiubin FanHongyan ZangYu Wang
作者单位: 1Beijing University of Science and Technology 100083, Beijing, China
2State Key Laboratory of Cryptology, 100878 Beijing, China
刊名: Theoretical Computer Science, 2016, Vol.630 , pp.76-94
来源数据库: Elsevier Journal
DOI: 10.1016/j.tcs.2016.03.028
关键词: General Number Field SieveInteger factorizationMathematical expectationp - adic evaluationComputational complexitySpace complexity
原始语种摘要: Abstract(#br)The General Number Sieve is the most efficient algorithm for integer factorization. It consists of polynomial selection, sieving, solving equations and finding square roots. Root lifting of polynomial is discussed in this paper. The p - adic evaluation provided by each root and the expected p -value are also given. Then we gain the space complexity of sieving and building equations over the ring Z / 2 Z .
全文获取路径: Elsevier  (合作)
分享到:
来源刊物:
影响因子:0.489 (2012)

×