On positivity-preserving high order discontinuous Galerkin schemes for compressible Navier–Stokes equations
作者: Xiangxiong Zhang
作者单位: 1Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States
刊名: Journal of Computational Physics, 2017, Vol.328 , pp.301-343
来源数据库: Elsevier Journal
DOI: 10.1016/j.jcp.2016.10.002
关键词: Discontinuous Galerkin methodHigh order accuracyGas dynamicsCompressible Navier–StokesPositivity-preservingHigh speed flows
原始语种摘要: Abstract(#br)We construct a local Lax–Friedrichs type positivity-preserving flux for compressible Navier–Stokes equations, which can be easily extended to multiple dimensions for generic forms of equations of state, shear stress tensor and heat flux. With this positivity-preserving flux, any finite volume type schemes including discontinuous Galerkin (DG) schemes with strong stability preserving Runge–Kutta time discretizations satisfy a weak positivity property. With a simple and efficient positivity-preserving limiter, high order explicit Runge–Kutta DG schemes are rendered preserving the positivity of density and internal energy without losing local conservation or high order accuracy. Numerical tests suggest that the positivity-preserving flux and the positivity-preserving limiter do...
全文获取路径: Elsevier  (合作)
影响因子:2.138 (2012)

  • preserving 保藏
  • positivity 正性
  • compressible 可压缩性的
  • satisfying 饱和
  • limiter 限幅器
  • construct 建设
  • efficient 有用的
  • artificial 人为的
  • discontinuous 不连续的
  • order