A positivity-preserving high order discontinuous Galerkin scheme for convection–diffusion equations
作者: Sashank SrinivasanJonathan PoggieXiangxiong Zhang
作者单位: 1School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907-2045, United States
2Department of Mathematics, Purdue University, 150 N. University Street, West Lafayette, IN 47907-2067, United States
刊名: Journal of Computational Physics, 2018, Vol.366 , pp.120-143
来源数据库: Elsevier Journal
DOI: 10.1016/j.jcp.2018.04.002
关键词: Discontinuous Galerkin finite element methodHigh order accuracyConvection–diffusion equationsPositivity-preservingGlow dischargeDrift–diffusion
原始语种摘要: Abstract(#br)For constructing high order accurate positivity-preserving schemes for convection–diffusion equations, we construct a simple positivity-preserving diffusion flux. Discontinuous Galerkin (DG) schemes with such a positivity-preserving diffusion flux are nonlinear schemes, which can be regarded as a reduction of the high order positivity-preserving DG schemes for compressible Navier–Stokes equations in [1] to scalar diffusion operators. In this paper we focus on the local DG method to discuss how to apply such a flux. A limiter on the auxiliary variable for approximating the gradient of the solution must be used so that the diffusion flux is positivity-preserving in the sense that DG schemes with this flux satisfies a weak positivity property. Together with a...
全文获取路径: Elsevier  (合作)
影响因子:2.138 (2012)

  • preserving 保藏
  • convection 对流
  • diffusion 扩散
  • positivity 正性
  • limiter 限幅器
  • auxiliary 辅助的
  • demonstrate 说明
  • discontinuous 不连续的
  • accurate 精确的
  • modeling 制祝型