Neumann problem for the capillary wave equation
作者: B. Juarez CamposE. KaikinaHector F. Ruiz Paredes
作者单位: 1Instituto Tecnologico de Morelia, Avenida Tecnologico #1500, Lomas de Santiaguito, Morelia CP 58120, Michoacán, Mexico
2Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), Morelia CP 58089, Michoacán, Mexico
刊名: Nonlinear Analysis, 2017, Vol.160 , pp.108-134
来源数据库: Elsevier Journal
DOI: 10.1016/j.na.2017.05.008
关键词: Cubic nonlinear fractional Schrödinger equationInitial–boundary value problemThe global-in-time analysisAsymptotics of solutions
原始语种摘要: Abstract(#br)We study the initial–boundary value problem IBV problem for the cubic capillary wave equation i u t + | u | 2 u = | ∂ x | 3 2 u , t > 0 , x > 0 ; u ( x , 0 ) = u 0 ( x ) , x > 0 , u x ( 0 , t ) = h ( t ) , t > 0 , where | ∂ x | 3 2 u = 1 2 π ∫ 0 ∞ sign ( x − y ) | x − y | u y y ( y ) d y . We prove the global in time existence of solutions of IBV problem for nonlinear Fractional Schrödinger equation with inhomogeneous Neumann boundary conditions. Also we are interested in the study of the asymptotic behavior of solutions. Our approach to get well-posedness of nonlinear problems is based on the...
全文获取路径: Elsevier  (合作)
分享到:
来源刊物:

×
关键词翻译
关键词翻译
  • problem 题目
  • equation 方程
  • asymptotic 渐近的
  • approach 
  • capillary 毛状的
  • width 幅度
  • global 球状的
  • argument 自变量
  • prove 实验
  • nonlinear 非线性的