Superconvergence of C 0 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^0$$\end{document} - Q k \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q^k$$\end{document}
作者: Hao LiXiangxiong Zhang
作者单位: 1Department of Mathematics, Purdue University, 150 N. University Street, 47907-2067, West Lafayette, IN, USA
刊名: Journal of Scientific Computing, 2019, Vol.82 (1), pp.447-453
来源数据库: Springer Nature Journal
DOI: 10.1007/s10915-019-01102-1
关键词: SuperconvergenceFourth order finite differenceElliptic equationsGauss–Lobatto pointsApproximated coefficients
英文摘要: Abstract(#br)We prove that the superconvergence of C 0 \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$C^0$$\end{document} - Q k \documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Q^k$$\end{document} finite element method at the Gauss–Lobatto quadrature points still holds if variable coefficients in an elliptic problem are replaced by their piecewise Q k...
全文获取路径: Springer Nature  (合作)
分享到:
来源刊物:
影响因子:1.71 (2012)

×