<ImageObject Color="BlackWhite" FileRef="13662_2018_1765_Article_IEq1.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/> Spin ( 7 ) $\operatorname{Spin}(7)$ -structure equation and the vector elliptic Liouville equation
作者: Shiping Zhong
作者单位: 1School of Mathematical Sciences, Fudan University
刊名: Advances in Difference Equations, 2018, Vol.2018 (1), pp.1-13
来源数据库: Springer Journal
DOI: 10.1186/s13662-018-1765-x
关键词: Spin ( 7 ) $\operatorname{Spin}(7)$ -structure equationOctonionsAlmost complex structureThe vector elliptic Liouville equation
英文摘要: Abstract(#br)The mapping between Belavin–Polyakov (BP) equation for the evolution of a unit tangent vector T ∈ S 2 $T\in \mathbb{S}^{2}$ of a space curve in R 3 $\mathbb{R}^{3}$ and the elliptic Liouville equation has been shown by Balakrishnan (see Phys. Lett. A 204:243–246, 1995 ). In the present work, this result is effectively extended by mapping the BP equation for the unit tangent T ∈ S 6 $T\in \mathbb{S}^{6}$ of a space...
全文获取路径: Springer  (合作)
影响因子:0.76 (2012)