A Fast Second-Order Implicit Difference Method for Time-Space Fractional Advection-Diffusion Equation
作者: Yong-Liang ZhaoTing-Zhu HuangXian-Ming GuWei-Hua Luo
作者单位: 1School of Mathematical Sciences , University of Electronic Science and Technology of China , Chengdu , Sichuan , P.R. China
2;School of Economic Mathematics/Institute of Mathematics , Southwestern University of Finance and Economics , Chengdu , Sichuan , P.R. China
3;School of Mathematics and Computational Science , Hunan University of Arts and Science , Changde , Hunan , P.R. China
刊名: Numerical Functional Analysis and Optimization, 2020, Vol.41 (3), pp.257-293
来源数据库: Taylor & Francis Journal
DOI: 10.1080/01630563.2019.1627369
关键词: Circulant preconditionerFast Fourier transformKrylov subspace methodLinear/nonlinear fractional advection-diffusion equationToeplitz matrixWeighted and shifted Grünwald schemeL2- formula
原始语种摘要: Abstract(#br)In this paper, we consider a fast second-order implicit difference method to approximate a class of linear time-space fractional variable coefficients advection-diffusion equation. To begin with, an implicit difference scheme is constructed based on L 2- formula [Alikhanov AA. 2015;280:424–38.] for the temporal discretization and weighted and shifted Grünwald method for the spatial discretization. Then, the unconditional stability of the scheme is proved. We theoretically and numerically show that it converges in the L 2-norm with the optimal order with the time step...
全文获取路径: Taylor & Francis  (合作)

  • inline 顺列式布置
  • graphic 图示的
  • subspace 子空间
  • Space 空格
  • computational 计算的
  • fractional 分级的
  • approximate 近似的
  • demonstrate 说明
  • technique 技术
  • implicit 隐含的