Mixed Initial-Boundary Value Problem for the Capillary Wave Equation
作者: B. Juarez CamposElena KaikinaHector F. Ruiz ParedesPavel Kurasov
作者单位: 1Instituto Tecnologico de Morelia, Avenida Tecnologico No. 1500, Lomas de Santiaguito, 58120 Morelia, MICH, Mexico
2Centro de Ciencias Matemáticas, UNAM Campus Morelia, AP 61-3 (Xangari), 58089 Morelia, MICH, Mexico
刊名: Advances in Mathematical Physics, 2016, Vol.2016
来源数据库: Hindawi Journal
DOI: 10.1155/2016/7475061
原始语种摘要: We study the mixed initial-boundary value problem for the capillary wave equation: i u t + u 2 u = ∂ x 3 / 2 u , t > 0 , x > 0 ; u ( x , 0 ) = u 0 ( x ) , x > 0 ; u ( 0 , t ) + β u x ( 0 , t ) = h ( t ) , t > 0 , where ∂ x 3 / 2 u = ( 1 / 2 π ) ∫ 0 ∞ sign ⁡ x - y / x - y u y y ( y ) d y . We prove the global in-time existence of solutions of IBV problem for nonlinear capillary equation with inhomogeneous Robin boundary conditions. Also we are interested in the study of the asymptotic behavior of solutions.
全文获取路径: Hindawi 
分享到:

×
关键词翻译
关键词翻译
  • asymptotic 渐近的
  • problem 题目
  • prove 实验
  • interested 有利害关系
  • capillary 毛状的
  • equation 方程
  • boundary 边界
  • existence 存在
  • initial 开首字母
  • inhomogeneous 不均质的