Ensemble hindcasting of wind and wave conditions with WRF and WAVEWATCH III ® driven by ERA5
使用ERA5驱动的WRF和WAVEWATCH III?进行风和浪条件的集成后处理
作者: Robert Daniel OsinskiHagen Radtke
作者单位: 1Leibniz Institute for Baltic Sea Research Warnemünde, Physical Oceanography and Instrumentation, Seestrasse 15, 18119 Rostock, Germany
刊名: Ocean Science, 2020, Vol.16 (2), pp.355-371
来源数据库: Copernicus Journal
DOI: 10.5194/os-16-355-2020
原始语种摘要: When hindcasting wave fields of storm events with state-of-the-art wave models, the quality of the results strongly depends on the meteorological forcing dataset. The wave model will inherit the uncertainty of the atmospheric data, and additional discretization errors will be introduced due to a limited spatial and temporal resolution of the forcing data. In this study, we apply an atmospheric downscaling to (i) add regional details to the wind field, (ii) increase the temporal resolution of the wind fields, (iii) provide a more detailed representation of transient events such as storms and (iv) generate ensembles with perturbed atmospheric conditions, which allows for a flow-dependent and spatio-temporally variable uncertainty estimation. We test different strategies to generate an...
全文获取路径: PDF下载  Copernicus Publications 
分享到:

×
关键词翻译
关键词翻译
  • forcing 催熟栽培
  • conditions 条件式
  • meteorological 气象的
  • reanalysis 再分析
  • historical 历史的
  • atmospheric 大气的
  • extreme 极端的
  • quantify 量化
  • climate 气候
  • events 定时