Machine learning techniques for detecting topological avatars of new physics
刊名: Philosophical Transactions of the Royal Society A, 2019, Vol.377 (2161)
来源数据库: Royal Society
原始语种摘要: The search for highly ionizing particles in nuclear track detectors (NTDs) traditionally requires experts to manually search through samples in order to identify regions of interest that could be a hint of physics beyond the standard model of particle physics. The advent of automated image acquisition and modern data science, including machine learning-based processing of data presents an opportunity to accelerate the process of searching for anomalies in NTDs that could be a hint of a new physics avatar. The potential for modern data science applied to this topic in the context of the MoEDAL experiment at the large Hadron collider at the European Centre for Nuclear Research, CERN, is discussed.This article is part of a discussion meeting issue ‘Topological avatars of new physics’.
全文获取路径: The Royal Society 

  • topological 拓扑的
  • detecting 检测
  • physics 物理学
  • searching 勘探
  • processing 加工
  • manually 手控
  • learning 学识
  • machine 机器
  • image 
  • modern 现代的